
CaMPL	Type	Inference

Saina Daneshmandjahromi
MSc Student at U of C

Supervisor : Robin Cockett
July 2024

1

• CaMPL	is	a	Concurrent	functional	style	programming	language.

• In	the	current	implementation	of	CaMPL,	functions	are	not	first-class	citizens.	Higher-order	
functions	in	the	current	implementation	can	be	added	using	the	coinductive	data	type:

						However,	this	results	in	a	cumbersome	syntax.

• Folds	for	data,	Unfolds	for	codata	and	Drives	for	protocols	have	not	been	implemented.

Reimplementing	CaMPL

2

• CaMPL	is	a	statically	 typed	programming	 language.	The	compiler	must	check	that	
each	expression	can	be	typed	before	the	program	runs.

• CaMPL	 uses	 a	 type	 inference	 algorithm,	 allowing	 types	 to	 be	 inferred	 from	 the	
context	of	the	expression.

CaMPL	Type	Inference

3

We	can	work	out	the	type	of	f	in	this	way,	but	we	need	an	algorithm	to	be	able	to	infer	
the	types	of	arbitrary	expressions.

4

Type	Inference	Algorithm
This	algorithm	has	two	parts:

1. Collecting	the	equations	which	must	hold	between	the	types.	

2. Solving	these	equations.

To	obtain	the	type	Inference	rules,	we	transform	type	checking	judgements	into	type	
inference	judgements:

• 		

To	do	Type	Inference	for	CaMPL,	one	needs	type	inference	rules	for	all	its	constructs.

Γ ⊢ t :: T ⟨E⟩

5

Type	Checking	Rules	for	the	Simply	Typed	Lambda	Calculus	

x :: P, Γ ⊢ t :: T

Γ ⊢ λx.t :: P → T
abst

Γ ⊢ f :: P → Q Γ ⊢ t :: P

Γ ⊢ (ft) :: Q
app

x :: P, Γ ⊢ x :: P
prj

1.	Choose	a	variable	from	the	context

2.	Form	an	abstraction

3.	Form	an	application

6

Type	Inference	Rules	for	the	Simply	Typed	Lambda	Calculus	

1.	Type	Infer	Variables

2.	Type	Infer	Abstractions

3.	Type	Infer	Applications

Γ ⊢ f :: F ⟨E1⟩ Γ ⊢ t :: P ⟨E2⟩

Γ ⊢ ft :: Q

⟨ ∃F, P.F = P → Q,E1, E2 ⟩

app

x :: P, Γ ⊢ t :: T ⟨ E1 ⟩

Γ ⊢ λx.t :: Q

⟨ ∃P, T.Q = P → T,E1 ⟩

abst

x :: P, Γ ⊢ x :: Q ⟨ P = Q ⟩
prj

x :: Q, Γ ⊢ x :: Q
prj

x :: P, Γ ⊢ t :: T

Γ ⊢ λx.t :: P → T
abst

Γ ⊢ f :: P → Q Γ ⊢ t :: P

Γ ⊢ (ft) :: Q
app

7

Type	Inference	Example

8

x :: P ⊢ x :: E

⟨E1⟩

x :: P, Γ ⊢ t :: T ⟨ E1 ⟩

Γ ⊢ λx.t :: Q

⟨ ∃P, T.Q = P → T,E1 ⟩

abst

⊢ λx.x :: Q

E0 = ⟨∃ P,E.Q = P → E,E1⟩

abst

9

⊢ λx.x :: Q

E0 = ⟨∃ P,E.Q = P → E,E1⟩

abst

x :: P ⊢ x :: E

E1 = ⟨P = E⟩

prj

x :: P, Γ ⊢ x :: Q ⟨ P = Q ⟩
prj

Type	Inference	Example

⟨∃ P,E. Q = P → E

⟨P = E⟩⟩

Type	Equations	

10

⊢ λx.x :: Q

E0 = ⟨∃ P,E.Q = P → E,E1⟩

abst

x :: P ⊢ x :: E

E1 = ⟨P = E⟩

prj

Solving	Type	Equations	

2.																																																														can	be	replaced	with																																	
		(matching).	

∃ x.(x = t, E) = E[t/x]

1.	Existentially	bound	variables	can	be	eliminated	if	there	is	an	occurs	check	
free	substitution	for	them		

⟨∃A,B. C = (A,B)
⟨A = D⟩
⟨B = E⟩⟩

⟨C = (D,E)⟩

⟨A → B → C = D → E⟩
⟨B → C = E⟩

⟨A = D⟩

11

⟨∃ P,E. Q = P → E

⟨P = E⟩⟩

Type	Equations	

12

⟨Q = E → E⟩

CaMPL	Constructs
Type	judgements	can	be	written	for	every	construct	in	CaMPL.

13

apppattabs

14

app

CaMPL	Constructs

Addition	Function	Type	Inference

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
⟨E1⟩

15

Addition	Function	Type	Inference

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
⟨E2⟩

x :: P, Γ ⊢ t :: T ⟨ E1 ⟩

Γ ⊢ x → t :: Q

⟨ ∃P, T.Q = P → T,E1 ⟩

pattabs

16

Addition	Function	Type	Inference

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
⟨E3⟩

Γ ⊢ x :: A ⟨ E1 ⟩ Γ ⊢ y :: B ⟨ E2 ⟩

Γ ⊢ (x, y) :: Q
⟨ ∃A,B.Q = (A,B), E1, E2 ⟩

tuple

17

Addition	Function	Type	Inference

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
E3 = ⟨∃ 5, 6.5 = 6 → 2, E4, E5⟩

app

add :: 0, x :: 3, y :: 4 ⊢ ((+) x) :: 5
⟨E4⟩

add :: 0, x :: 3, y :: 4 ⊢ y :: 6

⟨E5⟩

Γ ⊢ f :: F ⟨E1⟩ Γ ⊢ t :: P ⟨E2⟩

Γ ⊢ ft :: Q

⟨ ∃F, P.F = P → Q,E1, E2 ⟩

app

18

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

Addition	Function	Type	Inference

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
E3 = ⟨∃ 5, 6.5 = 6 → 2, E4, E5⟩

app

add :: 0, x :: 3, y :: 4 ⊢ ((+) x) :: 5
⟨E4⟩

add :: 0, x :: 3, y :: 4 ⊢ y :: 6

E5 = ⟨4 = 6⟩

prj

19

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

x :: P, Γ ⊢ x :: Q

⟨ P = Q ⟩

prj

Addition	Function	Type	Inference

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
E3 = ⟨∃ 5, 6.5 = 6 → 2, E4, E5⟩

app

add :: 0, x :: 3, y :: 4 ⊢ ((+) x) :: 5
E4 = ⟨∃ 7, 8.7 = 8 → 5, E6, E7⟩

app
add :: 0, x :: 3, y :: 4 ⊢ y :: 6

E5 = ⟨4 = 6⟩

prj

20

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

Γ ⊢ f :: F ⟨E1⟩ Γ ⊢ t :: P ⟨E2⟩

Γ ⊢ ft :: Q

⟨ ∃F, P.F = P → Q,E1, E2 ⟩

app

add :: 0, x :: 3, y :: 4 ⊢ (+) :: 7
⟨E6⟩

add :: 0, x :: 3, y :: 4 ⊢ x :: 8

⟨E7⟩

Addition	Function	Type	Inference

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
E3 = ⟨∃ 5, 6.5 = 6 → 2, E4, E5⟩

app

add :: 0, x :: 3, y :: 4 ⊢ ((+) x) :: 5
E4 = ⟨∃ 7, 8.7 = 8 → 5, E6, E7⟩

app
add :: 0, x :: 3, y :: 4 ⊢ y :: 6

E5 = ⟨4 = 6⟩

prj

21

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

add :: 0, x :: 3, y :: 4 ⊢ (+) :: 7
E6 = ⟨7 = Int → Int → Int⟩

add :: 0, x :: 3, y :: 4 ⊢ x :: 8

E7 = ⟨3 = 8⟩

prj

x :: P, Γ ⊢ x :: Q

⟨ P = Q ⟩

prj

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2
⟨∃ 7, 8. 7 = 8 → 5

⟨7 = Int → Int → Int⟩
⟨3 = 8⟩⟩

⟨4 = 6⟩⟩⟩

Type	Equations	

22

add :: 0, x :: 3, y :: 4 ⊢ (((+) x) y) :: 2
E3 = ⟨∃ 5, 6.5 = 6 → 2, E4, E5⟩

app

add :: 0, x :: 3, y :: 4 ⊢ ((+) x) :: 5
E4 = ⟨∃ 7, 8.7 = 8 → 5, E6, E7⟩

app
add :: 0, x :: 3, y :: 4 ⊢ y :: 6

E5 = ⟨4 = 6⟩

prj

⊢ add = (x, y) → (((+) x) y)
E0 = ⟨E1⟩

function

add :: 0 ⊢ (x, y) → (((+) x) y) :: 0
E1 = ⟨∃ 1, 2.0 = 1 → 2, E2⟩

pattabs

add :: 0, (x, y) :: 1 ⊢ (((+) x) y) :: 2
E2 = ⟨∃ 3, 4.1 = (3, 4), E3⟩

tuple

add :: 0, x :: 3, y :: 4 ⊢ (+) :: 7
E6 = ⟨7 = Int → Int → Int⟩

add :: 0, x :: 3, y :: 4 ⊢ x :: 8

E7 = ⟨3 = 8⟩

prj

23

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2
⟨∃ 7, 8. 7 = 8 → 5

⟨7 = Int → Int → Int⟩
⟨3 = 8⟩⟩

⟨4 = 6⟩⟩⟩

24

⟨7 = 3 → 5⟩

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2
⟨∃ 7, 8. 7 = 8 → 5

⟨7 = Int → Int → Int⟩
⟨3 = 8⟩⟩

⟨4 = 6⟩⟩⟩

25

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2
⟨∃ 7. 7 = 3 → 5, 7 = Int → Int → Int, 4 = 6⟩

26

⟨Int → Int → Int = 3 → 5⟩

matching
⟨5 = Int → Int⟩

⟨3 = Int⟩

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2
⟨∃ 7. 7 = 3 → 5, 7 = Int → Int → Int, 4 = 6⟩

27

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2, 3 = Int, 5 = Int → Int, 4 = 6⟩⟩⟩

28

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 5, 6. 5 = 6 → 2, 3 = Int, 5 = Int → Int, 4 = 6⟩⟩⟩

⟨Int → Int = 6 → 2⟩

⟨6 = Int⟩
⟨2 = Int⟩

matching

29

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 6. 3 = Int, 2 = Int, 6 = Int, 4 = 6⟩⟩⟩

30

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨∃ 6. 3 = Int, 2 = Int, 6 = Int, 4 = 6⟩⟩⟩

⟨4 = Int⟩

31

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨ 3 = Int, 2 = Int, 4 = Int⟩⟩⟩

32

⟨∃ 1, 2. 0 = 1 → 2
⟨∃ 3, 4. 1 = (3, 4)

⟨ 3 = Int, 2 = Int, 4 = Int⟩⟩⟩

⟨1 = (Int, Int)⟩

33

⟨∃ 1, 2. 0 = 1 → 2, 1 = (Int, Int), 2 = Int⟩

34

⟨∃ 1, 2. 0 = 1 → 2, 1 = (Int, Int), 2 = Int⟩

⟨0 = (Int, Int) → Int⟩

CaMPL	Inductive	Constructs	

appcons

consPatt

35

CaMPL	Data	Type	Rules

data List(A) → C =
Nil :: → C

Cons :: A,C → C

⊢ (Cons(x, ys)) :: 0
⟨∃ 1, 2.1 = 2 → 0, E1, E2⟩

app

⊢ Cons :: 1

⟨E1⟩
⊢ (x, ys) :: 2

⟨E2⟩

Γ ⊢ f :: F ⟨E1⟩ Γ ⊢ t :: P ⟨E2⟩

Γ ⊢ ft :: Q

⟨ ∃F, P.F = P → Q,E1, E2 ⟩

app

36

CaMPL	Data	Type	Rules

⊢ Cons :: 1
E1 = ⟨∃ 3.1 = (3, List(3)) → List(3)⟩

cons

⊢ (Cons(x, ys)) :: 0
⟨∃ 1, 2.1 = 2 → 0, E1, E2⟩

app

⊢ (x, ys) :: 2
⟨E2⟩

data List(A) → C =
Nil :: → C

Cons :: A,C → C

Nil :: → List(3)
Cons :: 3, List(3) → List(3)

[3/A, List(3)/C]

37

CaMPL	Data	Type	Rules

(Cons(x, xs)) :: 0 ⊢
⟨∃ 1, 2.2 = (1, List(1)), 0 = List(1), E1⟩

consPatt

(x, xs) :: 2 ⊢
⟨E1⟩

data List(A) → C =
Nil :: → C

Cons :: A,C → C

Nil :: → List(1)
Cons :: 1, List(1) → List(1)

[1/A, List(1)/C]

38

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))
E0 = ⟨E1⟩

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))
E1 = ⟨∃ 1, 2, 3, 4.0 = 1 → 2, 0 = 3 → 4, E3, E7⟩

pattabs

errppend :: 0, (Nil, ys) :: 1 ⊢ ys :: 2
E3 = ⟨∃ 5, 6.1 = (5, 6), E4⟩

tuple
errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4

E7 = ⟨∃ 8, 9.3 = (8, 9), E8⟩

tuple

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E4 = ⟨∃ 7.5 = List(7), E5⟩

consPatt

errppend :: 0, ys :: 6 ⊢ ys :: 2

E6 = ⟨2 = 6⟩

prj

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
E8 = ⟨∃ 10, 11.8 = List(10), 11 = (10, List(10)), E9⟩

consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
E9 = ⟨∃ 12, 13.11 = (12, 13), E10⟩

tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
E10 = ⟨∃ 14, 15.14 = 15 → 4, E11, E12⟩

app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
E11 = ⟨∃ 16.14 = (16, List(16)) → List(16)⟩

cons
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15

E12 = ⟨∃ 17, 18.15 = (17, 18), E13, E14⟩

tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E13 = ⟨12 = 17⟩

prj
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E14 = ⟨12 = 18⟩

prj

39

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 5, 6. 1 = (5, 6)⟩ ⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 7. 5 = List(7)⟩

⟨2 = 6⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩

Solving	Equations

⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

40

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 5, 6. 1 = (5, 6)⟩ ⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 7. 5 = List(7)⟩

⟨2 = 6⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩ ⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

41

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩

⟨∃ 5, 6. 1 = (5, 6)⟩

⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

42

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩

⟨∃ 5, 6. 1 = (5, 6)⟩

⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

43

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩ ⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

44

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩

⟨15 = (12, 12)⟩

⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

45

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩ ⟨15 = (12, 12)⟩

46

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16.14 = (16, List(16)) → List(16)⟩ ⟨15 = (12, 12)⟩

⟨14 = (12, 12) → 4⟩

47

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 14, 16. 14 = (12, 12) → 4, 14 = (16, List(16)) → List(16)⟩

48

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 14, 16. 14 = (12, 12) → 4, 14 = (16, List(16)) → List(16)⟩

⟨(12, 12) → 4 = (16, List(16)) → List(16)⟩

⟨(12, 12) = (16, List(16))⟩
⟨4 = List(16)⟩

matching

matching

⟨12 = 16⟩
⟨12 = List(16)⟩

49

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 16. 12 = 16, 12 = List(16), 4 = List(16)⟩

50

⟨∃ 1, 2, 3, 4. 0 = 1 → 2, 0 = 3 → 4⟩

⟨∃ 8, 9. 3 = (8, 9)⟩

⟨∃ 10, 11. 8 = List(10), 11 = (10, List(10))⟩

⟨∃ 12, 13, 16. 11 = (12, 13), 12 = 16, 12 = List(16), 4 = List(16)⟩

⟨16 = List(16)⟩ Occurs	Check	Failure

The	second	step	of	type	inference	in	this	algorithm	uses	all	the	equations	and	we	do	
not	need	all	of	them	to	find	there	is	an	error,	also	the	location	of	the	error	is	not	
tracked.	

We	thought	of	a	new	approach	to	address	this	problem.
51

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, ys :: 6 ⊢ ys :: 2
varExpr

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
cons

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
consPatt

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17
prj

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18
prj

New	Approach	To	Solve	Equations

52

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, ys :: 6 ⊢ ys :: 2
prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
consPatt

53

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
consPatt

Type	Inference

Equations

errppend :: 0, ys :: 6 ⊢ ys :: 2
prj

54

Type	Inference

Equations

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

⟨2 = 6⟩

1

55

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
consPatt

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

Type	Inference

Equations

1
errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

varExpr

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

⟨∃ 7. 5 = List(7)⟩

⟨2 = 6⟩

errppend :: 0, (Nil, ys) :: 1 ⊢ ys :: 2
tuple

2

56

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

Type	Inference

Equations

1
errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt2

⟨∃ 5, 6. 1 = (5, 6)⟩

⟨∃ 7. 5 = List(7)⟩

⟨2 = 6⟩

⟨∃ 5, 6. 1 = (5, 6)⟩

3

57

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, ys :: 6 ⊢ ys :: 2
prj

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
cons

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
consPatt

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17
prj

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18
prj

58

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
cons

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
tuple

Type	Inference

Equations

1

2

3

4

⟨12 = 18⟩

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17
prj

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

59

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattexps

Type	Inference

Equations

1

2

3

4

⟨12 = 17⟩

5 ⟨12 = 18⟩

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E5 = ⟨12 = 17⟩

prj

60

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
cons

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
tuple

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
E6 = ⟨∃ 17, 18.15 = (17, 18), E4, E5⟩

tuple

Type	Inference

Equations

1

2

3

45

6

⟨∃17, 18.15 = (17, 18)⟩

⟨12 = 17⟩ ⟨12 = 18⟩

⟨15 = (12, 12)⟩

61

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E5 = ⟨12 = 17⟩

prj
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
cons

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
E7 = ⟨∃16.14 = (16, List(16)) → List(16)⟩

cons

Type	Inference

Equations

1

2

3

45

6

⟨∃16.14 = (16, List(16)) → List(16)⟩

7

⟨15 = (12, 12)⟩

62

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
E6 = ⟨∃ 17, 18.15 = (17, 18), E4, E5⟩

tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E5 = ⟨12 = 17⟩

prj
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, (x, xs) :: 11, ys :: 9 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
E8 = ⟨∃ 14, 15.14 = 15 → 4.E6, E7⟩

app

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
E6 = ⟨∃ 17, 18.15 = (17, 18), E4, E5⟩

tuple

Type	Inference

Equations

1

2

3

45

67

8

⟨∃ 16.14 = (16, List(16)) → List(16)⟩ ⟨15 = (12, 12)⟩

⟨14 = (12, 12) → 4⟩

⟨∃ 14, 16. 14 = (12, 12) → 4, 14 = (16, List(16)) → List(16)⟩

⟨∃ 16. 12 = 16, 12 = List(16), 4 = List(16)⟩

⟨(12, 12) → 4 = (16, List(16)) → List(16)⟩

⟨(12, 12) = (16, List(16))⟩
⟨4 = List(16)⟩

matching

matching

⟨12 = 16⟩
⟨12 = List(16)⟩

63

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
E7 = ⟨∃16.14 = (16, List(16)) → List(16)⟩

cons

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E5 = ⟨12 = 17⟩

prj
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

⊢ errppend = (Nil, ys) → ys

(Cons(x, xs), ys) → (Cons(x, x))

function

errppend :: 0, (Cons(x, xs), ys) :: 3 ⊢ (Cons(x, x)) :: 4
tuple

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (Cons(x, x)) :: 4
E8 = ⟨∃ 14, 15.14 = 15 → 4.E6, E7⟩

appliedExpr

Type	Inference

Equations

1

2

3

45

67

8

9

⟨∃ 12, 13, 16. 11 = (12, 13), 12 = 16, 12 = List(16), 4 = List(16)⟩

⟨16 = List(16)⟩ Occurs	Check	Failure

64

errppend :: 0, (Cons(x, xs)) :: 8, ys :: 9 ⊢ (Cons(x, x)) :: 4
consPatt

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ (x, x) :: 15
E6 = ⟨∃ 17, 18.15 = (17, 18), E4, E5⟩

tuple

errppend :: 0, ys :: 6 ⊢ ys :: 2

E0 = ⟨2 = 6⟩

prj

errppend :: 0, Nil() :: 5, ys :: 6 ⊢ ys :: 2
E1 = ⟨∃ 7.5 = List(7), E0⟩

consPatt

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ Cons :: 14
E7 = ⟨∃16.14 = (16, List(16)) → List(16)⟩

cons

errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 17

E5 = ⟨12 = 17⟩

prj
errppend :: 0, x :: 12, xs :: 13, ys :: 9 ⊢ x :: 18

E4 = ⟨12 = 18⟩

prj

errppend :: 0 ⊢ (Nil, ys) → ys
:: 0

(Cons(x, xs), ys) → (Cons(x, x))

pattabs

Fold	for	Inductive	Data	Type
fold construct

65

Γ ⊢ fold xs of

Nil :→ ys
:: 0

Cons : (b, acc) → (b : acc)
⟨∃ 1, 2, 3, 4, 5. 1 = List(5), 2 = 0, 3 = (5, 0), 4 = 0, E1, E2, E3⟩

fold

Γ ⊢ xs :: 1

⟨E1⟩
Γ ⊢ ys :: 2

⟨E2⟩
Γ, (b, acc) :: 3 ⊢ (b : acc) :: 4

⟨E3⟩

data List(A) → C =
Nil :: → C

Cons :: A,C → C

Nil :: → 0

Cons :: 5, 0 → 0

[5/A, 0/C]

CaMPL	Fold	Rules

66

CaMPL	CoData	Constructs	

Mealy	Machine

input : 5 status : 0

output : []

input : 1

status : 5

output : [1, 2, 3, 4, 5]

status : 6

input : 4

output : [4, 5, 6]

status : 10

input : 9

output : [9, 10]

status : 19

input : 10

output : [10, 11, 12, 13,
14, 15, 16, 17, 18, 19]

CaMPL	CoData	Constructs	

recordExpr

CaMPL	CoData	Type	Rules

codata C → Mealy(A,B) =
Step : A,C → (B,C)

a :: 1 ⊢ case(f(a, c)) of
:: 2

(b, cp) → (b, unfoldmealy(f, cp))
⟨E1⟩

Step : 3,Mealy(3, 4) → (4,Mealy(3, 4))[3/A, 4/B, ,Mealy(3, 4)/C]

CaMPL	Constructs
There	are	more	constructs	in	CaMPL	such	as:

1. Defn	and	Where	Constructs

2. Concurrent	constructs	such	as	:	run,	close,	put,	get,	halt,	hcase,	hput,	split,	fork,	Id,	
Neg,	Plug,	Race,	Drive,	…

By	 writing	 the	 rules	 for	 all	 of	 these	 constructs,	 CaMPL	 will	 have	 a	 powerful	 type	
inference	system.

71

Conclusion
• Type	judgments	can	be	written	for	every	construct	in	CaMPL.	If	we	write	these	type	

judgments	systematically,	we	will	be	able	to	use	them	in	the	new	constructs	that	we	
face	in	the	language	as	well.

• CaMPL	has	both	sequential	and	concurrent	constructs.	Type	judgements	can	be	
written	for	all	of	these	constructs.

• Our	approach	is	to	combine	the	two	steps	of	the	type	inference	algorithm	into	one	
step,	so	that	errors	can	be	detected	as	soon	as	possible	and	the	location	of	the	type	
errors	will	be	more	accurate.

72

References
1. J.	R.	B.	Cockett	and	Craig	Pastro.	The	Logic	of	Message	Passing.	Science	of	Computer	

Programming,	74(8):498–533,	2009.

2. Reginald	Lybbert.	Progress	for	the	Message	Passing	Logic.	Undergraduate	thesis,	University	
of	Calgary,	April	2018.	Provided	by	the	author.

3. Prashant	Kumar. Implementation	of	Message	Passing	Language. 2018.	
doi:10.11575/PRISM/10182.	url: https://prism.ucalgary.ca/	handle/1880/106402.

4. Jared	Pon.	Implementation	Status	of	CMPL.	Undergraduate	thesis	Interim	Report,	University	
of	Calgary,	December	2021.	Provided	by	the	author.

5. J.	R.	B.	Cockett.	Basic	Programming	for	Computable	Functions:	BPCF	(The	Typed	Lambda	
Calculus	with	Fixed	Points)	,	April	9,	2024.	Provided	by	the	author.

73

Thank	You	J

74

